skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ashmore, Bradley"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As phishing emails pose a growing threat to individuals and organizations alike, there is an urgent need to develop more accurate detection methods. Large Language Models (LLMs) have recently garnered major attention in this line of research; however, they often require large-scale data for fine-tuning, which is impractical in real-world application scenarios. This paper proposes DRILL, a new simple and efficient mechanism, for dual-reasoning LLMs to detect phishing emails with extremely small data. DRILL distills the reasoning ability from an LLM into a target small LM model, while integrating trainable perturbations to manipulate the inputs, which in turn adaptively enhances the inference ability of the target LM. Extensive experiments are conducted on multiple real-world email datasets, and the evaluation results demonstrate that DRILL can benefit from dual LMs, which significantly reduces training parameters and data required, while maintaining state-of-the-art performance in phishing email detection with limited data. 
    more » « less
    Free, publicly-accessible full text available December 2, 2025
  2. As the developers of malware continuously evolve their attacks and infection methods, so to must bot detection methods advance. Graph Neural Networks (GNNs) have emerged as a promising detection method. However, in most cases communications graphs reflecting bot-infected networks are plagued with class imbalance and a high level of heterophily. Graph oversampling techniques employed to tackle class imbalance on graphs have drawbacks, such as introducing noisy topological structures or exacerbating heterophily within the graph. Out-of-distribution detection (ODD) is considered as an alternative solution to address data imbalance issues, but when applied to graphs, it assumes that the underlying graph structure does not interfere with the learning of data distributions. In this paper, we present the first application of ODD methods for bot detection in a network. We propose a new energy-based ODD model, which surpasses existing ODD methods, including those tailored for ODD on graph data, and effectively mitigates performance degradation caused by graph heterophily. We substantiate our claims through extensive experiments on the TON IoT dataset, which comprises real captured bot data. The experimental results demonstrate that our model achieves state-of-the-art performance in bot detection on graphs with high graph heterophily and extreme class imbalance. 
    more » « less
  3. As malicious bots reside in a network to disrupt network stability, graph neural networks (GNNs) have emerged as one of the most popular bot detection methods. However, in most cases these graphs are significantly class-imbalanced. To address this issue, graph oversampling has recently been proposed to synthesize nodes and edges, which still suffers from graph heterophily, leading to suboptimal performance. In this paper, we propose HOVER, which implements Homophilic Oversampling Via Edge Removal for bot detection on graphs. Instead of oversampling nodes and edges within initial graph structure, HOVER designs a simple edge removal method with heuristic criteria to mitigate heterophily and learn distinguishable node embeddings, which are then used to oversample minority bots to generate a balanced class distribution without edge synthesis. Experiments on TON IoT networks demonstrate the state-of-the-art performance of HOVER on bot detection with high graph heterophily and extreme class imbalance. 
    more » « less